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MCQ

What is a Markov Random Field ?
O a particular case of Markov chain
L arandom process on undirected graphs
O a Bayesian model
L arandom field whose distribution is written as a Gibbs distribution

The (local) Markov property for random field states that the conditional
distribution of a pixel given all other pixels:

U depends only on previous pixels

O is a multivariate Gaussian distribution

U depends only on neighboring pixels

Q is null

What is a clique ?
O a particular case of Markov chain
O a set of mutually-neighboring nodes on a graph
O the set of all neighboring nodes
O the set of all nodes of a graph



Main notions

* Markov Random Fields
* Gibbs Random Fields
* Cliques & potential functions

* Bayesian models

* And also : Graph cut, ICM, Gibbs sampling



GraPH Definitions

e A graph G = (V,€) is a finite collection of nodes (or vertices)
V ={ni,ne,...,ny} and set of edges £ C (g)

@ We consider only undirected graphs

@ Neighbor: Two nodes n;,n; € V are neighbors if (n;,n;) € £

@ Neighborhood of a node: N (n;) = {n; : (ni,n;) € £}

@ Neighborhood is a symmetric relation: n; € N'(n;) < n; € N(n;)

e Complete graph:
Vn; €V, N(n;) = {(ni;ny),5 ={1,2,..., N}\{i}}

@ Clique: a complete subgraph of G.

@ Maximal clique: Clique with maximal number of nodes; cannot add
any other node while still retaining complete connectedness.

From Srinivas, 2011



GraPH Definitions

o £=1{(1,2),(1,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)}

° N(4) ={2,3,6}
e Examples of cliques: {(1),(3,4,6),(2,5)}

o V=1{1,23,4,56}

@ Set of all cliques: VUE U{3,4,6}



Markov Random Fields

A Markov Random field is a set of random variables defined on a 2D lattice such that
their joint probability distribution satisfies the local Markov property for any node of the
2D lattice:

p(xs| X\ fiy) = (@4 [Xar(i))

The grahical representation of a MRF is an undirected graphical model in which each
node corresponds to a random variable or a collection of random variables, and the
edges identify conditional dependencies.

2D lattice with a 4-
neighborhood structure



Gibbs Random Fields

A Gibbs Random field is a set of random variables defined on a 2D lattice such that their
joint probability distribution :

p(x) — 7 OXP\— E : VC’ (XC) , with Z the partition function
ceC and V. clique potentials

Ising model: binary MRF (+1:-1) on a 2D lattice

-~

p(x )Z%exp B> wix;

(i,7)€E




Hammersley-clifford Theorem

Consider a random field x on a graph G, such that p(x) > 0. Let C denote the set of all
maximal cliques of the graph.

If the field satisfies the local Markov property then p(x) can be writenn as a Gibbs
distribution :

1
P(X):ZGXP< _ZVC Xc) ¢
. CeC

Conversely, if p(x) can be written as a Gibbs distribution, it verifies the local Markov
property.

That is to say : Markov Random Fields < Gibbs Random Fields



sampling markov random fields

No direct sampling method as for instance for Gaussian random variables.

Principle: MCMC (Monte Carlo Markov Chain) approach to simulate a sequence of
images such that this sequence converges in law to the target distribution p(x)

Gibbs sampler : transition matrix of the Markov chain designed such that at each
iteration only one pixel value is modified.

p (X = 2| X™ =2™) = 6(x; — 2l"), Vi # i

p (X =

XM = azm) = (xi* = T+ | XN (i) = azj\r}(i*))

This Markov chain is irreductible and has a unique stationary distribution p(x), which
ensures the convergence of the Gibbs sampler to p(x).



sampling markov random fields

U(z) = —p Z-’Eil‘j — B Z:L'ia:j.

Some typical patterns drawn from this version are shown in Figure 3 for differ-
ent combinations of 3, and f. O

i.- f ‘. L
;. . . - | .. S
F1GURE 2. Samples from an Ising model on a lattice with first-order neighbor-

hood system and increasing 3 = 0 (in that case X;s are i.i.d., and sampling is
direct), 0.7, 0.9, 1.1, 1.5, and 2.

FI1GURE 3. Samples from an anisotropic Ising model on a lattice with first-order
neighborhood system and (f3;, 32) = (5,0.5), (5,0.1), (1,—1), (—1,—1), respec-
tively.

From Perez, 1998
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MRF & inverse problems

Bayesian model:
* Y:observed image
* X:image to be reconstructed

p(x]y) < p (y|x)p (x)
R _—

posterior observation likelihood prior

Different criterions:
* Sampling or estimating the posterior p(x|y) (e.g., Gibbs sampler)

+ map: I = arg maxp (X|y)

* MPM (Maximum Posterior Mode): g/\jz — argmaxp (Xi |Y)
T.
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MRF & inverse problems

Bayesian model:
* Y:observed image
* X:image to be reconstructed

p(x]y) < p (y|x)p (x)

observation likelihood

MRF prior

1
Hp(xi\yz-) EGXP{;VC(XC)}

)

- p(x]y) = exp {Z log p (yi|xi) +

x|y is also a MRF

ceC

> Vc<xc>}

rrrrrrrrrrrrrr
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MRF & inverse problems

Algorithm to solve for the MAP with MRF:

* |ICM (Iterative conditional mode): deterministic algorithm
* Gibbs sampler for x|y

* Graph-based algorithm (cf. Graph cut)



Additional resources

Markov Random fields and Images, P. Perez, 1998
http://www.cs.ubc.ca/~murphyk/Teaching/CS532c Fall04/Papers/perez cwi quarterly.pdf

Video on Markov Random Fields on undirected graphs
https://www.youtube.com/watch?v=iBQkZdPHICs
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