Learning Latent ODE-based embeddings
Published in IMT Atlantique, 2019
This study addresses the data-driven identification of latent dynamical representations of partially-observed systems, i.e. dynamical systems for which some components are never observed, with an emphasis on forecasting applications, including long-term asymptotic patterns. Whereas state-of-the-art data-driven approaches rely on delay embeddings and linear decompositions of the underlying operators, we introduce a framework based on the data-driven identification of an augmented state-space model using a neural-network-based representation. For a given training dataset, it amounts to jointly learn an ODE (Ordinary Differential Equation) representation in the latent space and reconstructing latent states. Through numerical experiments, we demonstrate the relevance of the proposed framework w.r.t. state-of-the-art approaches in terms of short-term forecasting performance and long-term behaviour. We further discuss how the proposed framework relates to Koopman operator theory and Takens' embedding theorem. Related paper: Ouala et al. Learning Latent Dynamics for Partially-Observed Chaotic Systems. arXiv 2019. (link)